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1 Introduction 
An understanding of atomic and molecular collisions is fundamental for gas- 
phase chemistry. Only binary collisions are important when the gas is not too 
dense.l They involve the collision of one atom or molecule with a second atom 
or molecule. Three types of collision can occur in a binary collision, as shown in 
Figure 1. 

molecular collisions 

elastic inelastic reactive 

Figure 1 Elastic, inehstic, and reactive molecular collisions. 

The simplest collision process is elastic scattering; it involves a change only 
in the translational motion of the colliding partners. IneZastic scattering changes 
the internal state of a particle as a result of the collision and reactive scattering 
results in a change in chemical species as well. The experimental observables 
for binary collisions are elastic, inelastic, and reactive collision cross-sections. 
From them, macroscopic properties of the gas can be calculated such as transport 
coefficients and reaction rate constants.lv2 

The theoretical framework underlying gas-phase chemistry is shown in Figure 2. 
The starting point involves nuclei, electrons, Coulomb’s Law, and the fundamental 
constants. From them intermolecular curves and surfaces can be calculated by 

*Delivered 24 September, 1974 at the Autumn Meeting of the Chemical Society, University 
of Leicester. 
R. D. Levine and R. B. Bernstein, ‘Molecular Reaction Dynamics’, Ciarendon Press, 
Oxford, 1974. 

a R. E. Weston and H. A. Schwarz, ‘Chemical Kinetics’, Prentice Hall, Englewood Cliffs, 
1972. 
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Molecular collisions and the semiclassical approximation 

the techniques of molecular quantum ~hemistry.~-~ These intermolecular 
interactions determine the dynamics of the colliding particles.1~7 Next, molecular 
collision theory is used to calculate collision cross-sections. In favourable 
cases, theory can be compared directly with experiment at this point. This is 
the case for collisions of Li+ with H2 for example.8 The final step in Figure 2 
involves statistical mechanics to calculate macroscopic properties of the gas. 

nuclei, electrons, R, e, me 

molecular quantum chemistry 1 
1 
i 

intermolecular potentials 

collision theory 

elastic, inelastic, and reactive collision cross-sections 

statistical mechanics 

macroscopic rate phenomena 

Figure 2 Theoretical framework of gas-phase chemistry. 

The most direct means for studying the dynamics of molecular collisions are 
molecular beam,g-l5 laser,16J7 and chemiluminescencels experiments. These 
experiments have provided a wealth of information and insight that is inaccessible 

H. F. Schaefer, tert., ‘The Electronic Structure of Atoms and Molecules: A Survey of 
Rigorous Quantum Mechanical Results’, Addison-Wesley, Reading, Mass., 1972. 
J. Goodisman, ‘Diatomic Interaction Potential Theory’, Academic Press, New York, 
1973 (2 vols.). 
C. Thomson, Ann. Reports, (A), 1974, 71, 5 .  
G. C. Maitland and E. B. Smith, Chem. SOC. Rev., 1973, 2, 181. 
M. A. D. Fluendy and K. P. Lawley, Essays in Chem., 1973, 5,  25. 
J. P. Toennies, Chem. SOC. Rev., 1974, 3, 407. J Schaefer and W. A. Lester, J. Chem. 
Phys., 1975, 62, 1913. 
R. J. Cross, Accounts Chem. Res., 1975, 8, 225. 

lo J. L. Kinsey, in ‘Chemical Kinetics’, ed. J. C. Polanyi, [M.T.P. International Review of 
Science, Physical Chemistry (Series One), Vol. 91, Butterworths, London, 1972, Ch. 6; 
J. M. Farrar and Y .  T. Lee, Ann. Rev. Phys. Chem., 1974,25,357. 

l1 M. A. D. Fluendy and K. P. Lawley, ‘Chemical Applications of Molecular Beam Scattering’, 
Chapman and Hall, London, 1973. 

l a  ‘Molecular Beam Scattering’, Faradav Discuss. Chem. SOC., 1973, No. 55. 
l3 J. P. Toennies, ‘Physical Chemistry, An Advanced Treatise’, Vol. VIA, ‘Kinetics of Gas 

Reactions’, ed. H. Eyring, W. Jost, and D. Henderson, Academic Press, New York, 1974, 
Ch. 5. See also Vol. VIB. 

l4 M. A. D. Fluendy, Contemp. Phys., 1975,16, 147. 
l6 Adv. Chem. Phys., 1975, Vol. 30. 
18 ‘Chemical and Biochemical Applications of Lasers’, ed. C. B. Moore, Academic Press, 

New York, 1974, Vol. 1. 
l7 K. L. Kompa, Topics Current Chem., 1973, 37, 1 ; M. J. Berry, Ann. Rev. Phys. Chem., 

1975, 26, 259. 
18 T. Carrington and J. C. Polanyi, in ‘Chemical Kinetics’, ed. J. c. Polanyi, [M.T.P. Inter- 

national Review of Science, Physical Chemistry (Series One), Vol. 91, Butterworths, 
London, 1972. Ch. 5. 

126 



Connor 

to the traditional kind of ‘test tube’ experiment, since the latter necessarily 
involves some kind of statistical average of molecular properties, an average 
that obscures the information being sought (see Figure 2 again). It is well known, 
for example, that reaction rate-constant data provide weak constraints on any 
model of the collision itself. 

Collisions between atoms and molecules are dynamic phenomena and are 
more difficult to treat theoretically than static properties.19 Consequently 
theoretical collision dynamics has not achieved the same level of accuracy that 
is now possible for static chemical properties (such as those of spectroscopy). 
Nevertheless, important advances have been made in recent years, and inter- 
pretative and predictive ability is considerable. 

Theories of molecular collisions can be classified in many ways. A classification 
suggested by Marcus20 is shown in Figure 3. Dynamical theories involve a solu- 

molecular collision 
theories 

dynamical statistical -dynamical statistical 
theories theories theories 

Figure 3 Molecular collision theories. 

tion of Schrodinger’s equation (quantum dynamics) or Hamilton’s equations 
(classical dynamics). In contrast, statistical theories avoid the solution of a 
dynamical problem by statistical assumptions. Transition State Theory as 
usually formulated is an example of a statistical theory.21 Statistical-dynamical 
theories treat some degrees of freedom by a statistical approach and the remainder 
by dynamical models. 

Dynamical models can be further divided into exact and approximate ones, 
as shown in Figure 4. 

dynamical collision 
theories 

exact approximate 
(quantum, classical, (quantum, classical, 

semiclassical) semiclassical) 

Figure 4 Dynamical collision theories. 
l 9  A. C. Wahl and C. W. Wilson, ‘Computers in Chemical Research and Education’, Proc. 

Internat. Conf. Ljubljana/Zagreb, 12-17 July 1973, ed. D. HadZi, Elsevier, Amsterdam, 
1973, Vol. 2, p. 41133. 

2o R. A. Marcus, Faraday Discuss. Chem. SOC., 1973, No. 55, p. 9. 
21 R. A. Marcus, ‘Techniques of Chemistry, Investigation of Rates and Mechanisms of 
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Molecular collisions and the semiclassical approximation 

Approximate theories make dynamical approximations, in contrast to exact 
theories, which do not. Quantal and classical theories solve Schrodinger’s equa- 
tion and Hamilton’s equations, respectively. The solutions can be analytic or 
numerical. An exact quanta1 treatment22-24 is always correct but is not feasible 
in most cases. A purely classical treatment, on the other hand, is feasible for 
many collision systems.25-29 

However, a purely classical calculation can be highly inaccurate with regard 
to certain features of the scattering. For example, a purely classical treatment 
cannot account for important tunnelling and interference effects that occur in 
atom-atom colli~ions.3~-~~ A semiclassical treatment33 constructs an asymptotic 
or short (de Broglie) wavelength solution to the Schrodinger equation with the 
help of real- and complex-valued solutions of Hamilton’s equations. Although 
it uses classical trajectory data as input, semiclassical theories can account for 
essentially all the ‘quantum effects’ such as diffraction, interference, quantization, 
quasi-bound states, resonances, selection rules, and tunnelling that purely 
classical theories miss. This technique of using real- and complex-valued classical 
trajectories in such a way that quantum effects are correctly accounted for is 
aptly described by the phrase ‘Sewing quantum flesh on classical bones’.=-37 

Complex-valued classical trajectories were introduced into short-wavelength 
theories in a systematic way by Keller in 1958 in his ‘Geometrical Theory of 
Diffra~tion’.~~ They have subsequently been used in numerous wave-propagation 
problems.39 The important role of classical trajectories in semiclassical elastic 

I ra  Methods Computer Phys., 1971, Vol. 10. 
as D. J. Kouri, ‘The Physics of Electronic and Atomic Collisions.’ Invited Lectures and Progress 

Reports, VIII’th ICPEAC, ed. B. C. cobid and M. V. Kurepa, Institute of Physics, Beograd, 
1973, p. 529. 

24  D. A. Micha, Adv. Chem. Phys., 1975,30, 7 .  
P. J. Kuntz, ‘The Physics of Electronic and Atomic Collisions’. Invited Papers and Progress 
Reports, VII’th ICPEAC, ed. T. R. Govers and F. J. de Heer, North Holland, Amsterdam, 
1972, p. 427. 

J. C. Polanyi and J. L. Schreiber, ‘Physical Chemistry - An Advanced Treatise’, Vol. VIA, 
‘Kinetics of Gas Reactions’, ed. H. Eyring, W. Jost, and D. Henderson, Academic Press, 
New York, 1974, Ch. 6. 

28 M. Karplus, ‘Collision Dynamics of Chemical Reactions’, 16 mm Colour Sound Film, 
Harper and Row, London. 
R. N. Porter, Ann. Rev. Phys. Chem., 1974, 25, 317. 

so Sir Harrie Massey, Contemp. Phys., 1973, 14, 497. 
31 E. E. Nikitin and M. Ya. Ovchinnikova, Uspekhi jiz. Nuuk, 1971, 104, 379 (Soviet Phys. 

Uspekhi, 1972, 14, 394). 
33 U. Buck, Adv. Chem. Phys., 1975, 30, 313. 

Some theories treat the internal motion quantum mechanically and the translational 
motion classically. These ‘classical path theories’ are included in the quantum category 
in this review. They are sometimes also called ‘semiclassical theories’. 

34 B. E. Kimber, adapted from a quotation in refs. 35-37. 
s6 Yu. A. Kravtsov, Izvest. V.U.Z. Radio&., 1967, 10, 1283. (Radio. Phys. Quanr. Elec- 

3* Yu. A. Kravtsov, Akust. Zhur., 1968, 14, 1 (Sovier Phys. Acoust., 1968, 14, 1). 
a7 M. V. Berry and K. E. Mount, Reports Progr. Phys., 1972, 35, 315. 
118 J. B. Keller, Proc. Symp. Appl. Math., 1958, 8, 27. 

a0 D. L. Bunker, Methods Computer Phys., 1971, 10, 287. 

tron., 1967, 10, 719). 

See for example ‘Special Issue on Rays and Beams’, Proc. Z.E.E.E., 1974, 62, No. 11. 
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scattering was emphasized by Smith40 and Berry,41 following on from the 
pioneering researches of Ford and Wheeler in 1959.42 Applications to inelastic 
and reactive molecular collisions started in 1970 due to the efforts of Millel”13 
and Marcus.& 

This review will describe some recent applications of semiclassical mechanics 
to elastic, inelastic, and reactive molecular collisions. One example of each type 
of collision will be described, believing that this is more valuable than a discussion 
of many examples in a more cursory manner. No derivations of equations will 
be presented; instead, some important features will be pointed out. Of particular 
note will be the way the theory depends on the topological structure of families 
of real- and complex-valued classical traje~tories.~~ 

For further information on semiclassical mechanics the book by Childg6 
and the reviews referred to below are recommended. A large number of references 
on semiclassical collision theory can be found in some recent literature 
surveys.47 -49 

Asymptotic approximations are commonly used in physical calculations 
(often without realizing it). They are usually very accurate, frequently more so 
than one would expect. 

As an example, consider Stirling’s asymptotic approximation for the Gamma 
(factorial) function9 

r ( x )  N (277)f xz-* e-z 

widely used in statistical mechanics. Table 1 shows that this approximation 
is valid for x % 1, but even for x = 1 or 2 (which are not usually thought of as 
large numbers) it compares favourably with the exact result. 

A similar situation holds in semiclassical theories of molecular collisions.51 
A general condition for the validity of short-wavelength theories is S % k, 
where S is a classical action variable, but in practice good results are often ob- 
tained when S z k, and in some cases the exact answer is pr0duced.~2 Action 
variables were used in the Old Quantum T h e ~ r y , ~ ~ - ~ ~  for example the Bohr- 
40 F. T. Smith, J .  Chem. Phys., 1965, 42, 2419. 
41 M. V. Berry, Proc. Phys. Soc., 1966, 89,479. 
48 K. W. Ford and J. A. Wheeler, Ann. Phys., 1959, 7, 259, 287. 
4s W. H. Miller, J .  Chem. Phys., 1970, 53, 1949. 
44 R. A. Marcus, Chem. Phys. Letters, 1970, 7, 525. 
46 M. V. Berry, Sci. Progr., 1969, 57, 43. 
48 M. S. Child, ‘Molecular Collision Theory’, Academic Press, London, 1974. 
47  T. F. George and J. Ross, Ann. Rev. Phys. Chem., 1973, 24,263. 
48 D. Secrest, Ann. Rev. Phys. Chem., 1973, 24, 379. 
I s  J. N. L. Connor, Ann. Reports (A) ,  1973, 70, 5. 
6 o  F. W. J. Olver, ‘Asymptotics and Special Functions’, Academic Press, New York, 1974, 

s1 I. C. Percival, ‘Atomic Physics’, Vol. 2, ed. P. G. H. Sandars, Plenum Press, New York, 

63 A. Norcliffe, Case Studies Atom. Phys., 1973, 4, No. 1. 
63 M. Born, ‘The Mechanics of the Atom’, translated from the German by J. W. Fisher 

and revised by D. R. Hartree, Ungar Publishing, New York, 1960. 
O4 M. Jammer, ‘The Conceptual Development of Quantum Mechanics’, McGraw-Hill, New 

York, 1966. 
66 F. Hund, ‘The History of Quantum Theory’, Harrap, London, 1974. 

p. 88. 

1971, p. 345. 
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Molecular collisions and the semiclassical approximation 

Table 1 Stirling’s approximation for the Gamma function as an example of an 
asymptotic approximation 

X 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
20 
30 
40 
50 

m) 
1.00000 x 100 
1.00000 x 100 
2.00000 x 100 
6.00000 x 100 
2.40000 x 101 
1.20000 x 102 
7.20000 x 102 

4.03200 x 104 
3.62880 x lo5 

1.21645 x 1017 
8.84176 x 1030 
2.03979 x 1046 
6.08282 x 10c2 

5.0400o x 103 

(277)* xz-* e-2 
0.92214 x 100 
0.95950 x 100 
1.94540 x 100 
5.87654 x 100 
2.36038 x 101 
1.18346 x lo2 
7.11485 x 102 
4.98780 x 103 
3.99485 x 104 
3.59870 x 105 
1.21139 x 1017 

8.81724 x lO3O 
2.03554 x 1046 
6.07269 x 1062 

Sommerfeld quantization condition which is the basis of the very accurate 
Rydberg-Klein-Rees method of molecular spectro~copy,~~ and other examples 
of action variables are described in the following sections. 

In the development of molecular collision theory, an important role has been 
played by certain canonical models of the collision process.49 These replace the 
actual (complicated and possibly unknown) intermolecular potential by a simpler 
one. In addition, the three-dimensional space in which the collision occurs is often 
reduced to two dimensions (planar) or one dimension (linear). This removes 
some degrees of freedom from the problem and simplifies the theoretical treat- 
ment. Table 2 lists a few of these canonical models for collisions involving a 
single potential energy surface (electronically adiabatic approximation). 

The three examples of semiclassical mechanics considered in the following 
Sections make use of the canonical models in Table 2. This is so that some 
important features of the collision are established as clearly as possible. 

Section 2 considers quasi-bound states in the elastic scattering of two atoms 
and the topic of complex eigenvalues. In Section 3, the interaction of a Morse 
oscillator with an atom is considered as an example of an inelastic collision, 
whilst Section 4 is devoted to reactive scattering and the definition of tunnelling. 
In every case the semiclassical results are compared with exact quantum ones to 
illustrate the good agreement that can be obtained (typically within a few per 
cent). It should be noted that exact quantum results are, in general, only available 
for simple systems of the kind in Table 2. Conclusions are in Section 5. 

2 Elastic Collisions: Quasi-bound States and Complex Eigenvalues 
Quasi-bound states arise in the elastic scattering of two atoms in the following 
way. Consider the radial Schrodinger equation for the collision :37s46 

E. A. Mason and L. Monchick, Adv. Chem. Phys., 1967, 12, 3B. 
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Table 2 Canonical models for molecular collisions 

Collision process Canonical model 
Elastic scattering 
Vibrationally inelastic collision 

Lennard-Jones (12, 6) potential 
Collinear collision of atom and a 
harmonic oscillator with exponential 
repulsion 
Atom-rigid rotator collision with a 
Lennard-Jones (12, 6) and ~z(cos6) 
interact ion 

on the Porter-Karplus potential- 
energy surface 

Rotationally inelastic collision 

Reactive collision Collinear atom-molecule collision 

where I is the orbital angular momentum quantum number, p is the reduced 
mass of the system, and E is the collision energy. Typically, the potential- 
energy curve V(r)  has a long-range attraction and a short-range repulsion; 
a well known example is the Lennard-Jones (12, 6) potential (see Table 2): 

where rm is the distance at which the well depth is E .  

Now for a certain range of I values, the effective potential Vz(r) defined by: 

V&) = V(r)  + h21(1 + 1)/2pr2 (3) 

can have a barrier in addition to a well. This is illustrated in Figure 5. The barrier 
may support quasi-bound states; these states have a finite lifetime because they 
can decay by tunnelling through the barrier, unlike true bound states which have 
an infinite lifetime. Other names for quasi-bound states are ‘shape resonances’ 
(from the shape of the effective potential) and ‘orbiting states’ because classically 
the particles orbit around each other when the collision energy is close to the 
barrier maximum. 

Quasi-bound states play an important role in a number of phenomena. 
These include : 
(a)  rotational predissociation of diatomic m o l e c u l e ~ ~ ~ ~ ~ 8  
(b) long-range interatomic forces59 

G7 M. S. Child, ‘Molecular Spectroscopy’, ed. R. F. Barrow, D. A, Long, and D. J. Millen 

Is W. C. Stwalley, J.  Chent. Phys., 1975, 63, 3062 
6 9  R. J .  Le Roy, ‘Molecular Spectroscopy’ ed. R. F. Barrow, D. A. Long, and D. J. Millen, 

(Specialist Periodical Reports), The Chemical Society, London, 1974, Vol. 2, Ch. 7. 

(Specialist Periodical Reports) The Chemical Society, London, 1973, Vol. 1, Ch. 3. 
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Molecular collisions and the semiclassical approximation 

Figure 5 Origin of quasi-bound states in the elastic scattering of two atoms. a, b, and c are 
classical turning points. 

(c) elastic and inelastic scattering e~periments~0-~3 
(d) three-body recombination r e a c t i o n ~ ~ t ~ ~  
(e) low-temperature transport property of gases66 
(f) Penning ionization67 
(g) pressure-induced absorption spectra of gases68 

A quasi-bound state can be characterized by the boundary conditions:69 

*CO) = 0 
$(r) N outgoing wave only (4) 

r+m 

6 o  J. P. Toennies, W. Welz, and G. Wolf, J .  Chem. Phys., 1974, 61, 2461. 
61 A. Schutte, D. Bassi, F. Tommasini, and G. Scoles, J. Chem. Phys., 1975, 62, 600. 
6B J. G. Maas, N. P. F. B. Van Asselt, and J. Los, Chem. Phys., 1975, 8, 37. 
O3 P. D. Gait, Chem. Phys. Letters, 1975, 35, 72. 
64 R. T. Pack, R. L. Snow, and W. D. Smith, J. Chem. Phys., 1972, 56,926. 

P. A. Whitlock, J. T. Muckerman, and R. E. Roberts, J .  Chem. Phys., 1974, 60, 3658. 
R. A. Buckingham and E. Gal, Adv. Atom. Mol. Phys., 1968, 4, 37. 

G. E. Ewing, Accounts Chem. Res., 1975, 8, 185. 
O7 R. J. Bieniek, J Phys. (B) ,  1974, 7 ,  L266. 

'CI V. de Alfaro and T. Regge, 'Potential Scattering', North Holland, Amsterdam, 1965. 
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The outgoing wave at infinity, with no incoming wave, is in accord with the 

The boundary conditions (4) have the important mathematical consequence 

When 1 is restricted to (physical) integer values, the energy becomes complex- 

idea of a quasi-bound state decaying by tunnelling through the barrier. 

that they give rise to a complex eigenvalue problem.69 

valued, and its eigenvalues can be written: 

En = 8, - i&rn, &'n > 0, rn > 0; n = 0, 1 , 2 , .  . . (5 )  

where 8 n  is the resonance energy and rn the resonance width. The physical 
interpretation of rn follows from the time evolution factor for the wavefunction: 

lexp(- iEnt/h)(Z = exp(- rnt /h)  (6) 

Equation (6) shows that the system decays exponentially in time, with a 'life- 
time' 7% = h/T'n. A long-lived state corresponds to a small r, and a short-lived 
one to a large rn. 

Equation (5 )  gives the complex eigenvalues for the Schrodinger equation (1) 
that satisfy boundary conditions (4). An alternative possibility consistent with 
these boundary conditions is to keep E real and allow the angular momentum 
to become complex-valued. Its eigenvalues can be written : 

In = In(') + ilnci), In(') > 0, > 0; n = 0, 1,  2, . . . (7) 

The complex eigenvalues (7) are called 'Regge Poles' (so called because the 
Scattering matrix takes the form: 

S = m/(l  - Zn) 
close to a pole Zn, where m is its residue).69 The physical interpretation of 
follows from the fact that the system decays exponentially with scattering 
angle 8 according to exp(- In(i) 8). The quantity l/ln(i) can be defined as the 
'angular life' of the system.69 For a long-lived state which orbits many times 
before decaying ln(i) is small whereas for a short-lived one Zn(i) is large. 

It can be seen that complex angular momentum and scattering angle are 
conjugate variables analogous to complex energy and time. 

When the Schrodinger equation (1) is solved semiclassically, the solution is 
of the form:37946 

where 

2pr (9) 

The appearance of ( I  + *)2 instead of &I + 1) in equation (9) is the Langer 
substitution.37.70 Provided h(Z + 4) is identified with the classical angular 

7e R. E. Langer, Phys. Rev., 1937, 51,669. 
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Molecular collisions and the semiclassical approximation 

momentum, p(r)  is the classical radial momentum, except that it can take 
on complex values instead of being restricted to being purely real. It can be 
seen that the semiclassical wavefunction (8) possesses the important property 
that it is composed of (real- or complex-valued) classical dynamical quantities. 

The semiclassical approximation (8) is clearly not valid close to real or com- 
plex points where 

P(r> = 0 (10) 

because there the solution ‘blows up’. Points satisfying equation (10) are usually 
called ‘turning points’ or ‘transition points’ (see Figure 5).  A major problem in 
semiclassical mechanics is to connect the solution valid on one side of a turning 
point with the solution valid on the other side. 

Figure 5 is an example showing three turning points. To overcome the connec- 
tion problem mentioned above, the semiclassical wavefunction in the neighbour- 
hood of turning point ‘a’ can be mapped onto the solution of the Schrodinger 
equation for a linear potential (the solution involves the Airy function).37.46971 
The turning points ‘b’ and ‘c’ can come close together or coalesce, and a 
unforrnly valid treatment requires that the semiclassical wavefunction be mapped 
onto the solution of the Schrodinger equation for a parabolic barrier (the solution 
involves Weber parabolic cylinder functions this time).37*46*71 In this way, the 
semiclassical wavefunction for equation (1) that satisfies boundary conditions 
(4) can be constructed. The semiclassical eigenvalue equation is found to be:72-77 

1 [ r(8 - ic) 
i (27r)* exp(m/2) 

a(E,Zn) = (n + 8 ) ~  + & [ E  - cln(-c)] - i l n  

where 

fia(E, In) = p(E, In ; r )  dr 1 
is the classical action integral associated with the well and 

C 
r 

- f i n ~ ( E ,  ln) = i p(E, In; r )  dr J 

(1 1) 

b 

is the one for the barrier. Equation (11) is also valid for the complex energy 
eigenvalues provided the replacements E - En and In - I are made. 

The quantization formula (1 1) again involves only classical dynamical quanti- 

71 S. C. MilIer and R. H. Good, Phys. Rev., 1953, 91, 174. 
78 J. N. L. Connor, Mol. Phys., 1968, 15, 621; ibid., 1969, 16, 525. 
73 J. N. L. Connor, Mol. Phys., 1972. 23, 717. 
74 J. N. L. Connor, Mol. Phys., 1973, 25, 1469. 
7s J. B. Delos and C. E. Carlson, Phys. Rev. (A), 1975, 11, 210. 
7* C. V. Sukumar and J. N. Bardsley, J .  Phys (B), 1975, 8, 568. 
77 C. V. Sukumar, S. L. Lin, and J .  N .  Bardsley, J.  Phys. ( B ) ,  1975, 8,  577. 
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ties, namely the two complex-valued action integrals ha and h m .  The form of 
equation (11) is characteristic of two turning points (which may be nearly co- 
incident), both of them being well separated from the third one. 

Limiting cases of equation (1 l), when all three turning points are well separated 
from each other, are of interest. When ~ T E  is large in magnitude (in terms of 
Figure 5 this corresponds to the energy being well above the barrier), equation (1 1) 
simplifies to : 

C 

a 

This is a Bohr-Sommerfeld quantization condition for the positions of the 
Regge Poles fn. The simpler form of equation (14) compared with the more 
general equation (1 1) reflects the simpler turning-point distribution in this case. 
Table 3 compares equation (14) with exact quantum results for the Lennard- 
Jones potential (2).78 The parameters approximate elastic scattering of K by 
HBr.79 The agreement is seen to be excellent. 

Table 3 Exact quantum and semicIassicaI Regge Pole positions for a Lennard- 
Jones (1 2, 6) potentiala 

n 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

I 

Re fn  
180.012 
179.239 
178.522 
177.866 
177.272 
176.742 
176.277 
175.877 
175.544 
175.276 

Im In 
21.219 
24.035 
26.890 
29.780 
32.700 
35.645 
38.609 
41.588 
44.576 
47.568 

Quantum@ 
\7 

Re ln 
180.015 
179.242 
178.526 
177.869 
177.275 
176.745 
176.279 
175.880 
175.547 
175.279 

Semiclassicalb 
I 

Im In 
21.218 
24.034 
26.889 
29.779 
32.699 
35.644 
38.608 
41.587 
44.575 
47.567 

a Parameters in equations (1) and (2) are E = 2.0 x lO-*O J, p = 4.377 x g, E = 4.0 x 
m. These values correspond approximately to K + HBr elastic 

scattering. See R. B. Bernstein and R. D. Levine, J.  Chem. Phys., 1968, 49, 3872; b J. N. L. 
Connor, W. Jakubetz, and C. V. Sukumar (unpublished results). The semiclassical results 
are calculated from equation (14). 

J, rm = 4.0 x 

Another interesting limiting case arises when the energy in Figure 5 is well 
below the barrier maximum. The quantization formula (11) simplifies to (for 
the complex energy eigenvalues this time) :72-74 

J .  N. L. Connor, W. Jakubetz, and C. V. Sukumar (unpublished results). 
'@ R. B. Bernstein and R. D. Levine, J. Chern. Phys., 1968, 49, 3872. 
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and 

Equation (1 5 )  is a Bohr-Sommerfeld quantization formula for the resonance 
energy gn in which 4 is a small term giving rise to a level shift 

In equation (16) for the resonance width, w is the classical angular frequency 
of oscillation in the well. In deriving equations (15) and (16), advantage has 
been taken of the fact that rn is small (corresponding to a long-lived quasi- 
bound state), with the consequence that the action integrals become real-valued. 

Table 4 shows some resonance energies and widths calculated from equations 

Table 4 Some exact quantum and semiclassical resonance energies and widths 
for a Lennard-Jones (1 2, 6) potentiala 

Quantumb SerniclassicaIC 

1 
118 
197 
25 
77 

128 
123 
87 

137 

7 
g n  

0.31004 
0.31008 
0.34862 
0.34935 
0.35007 
0.3896 1 
0.39009 
0.40233 

- 
r, 
1.2 x 10-17 

6.0 x 10-4 

8.4 x 10--5 
4.2 x 10-4 
3.4 x 10-3 

9.6 x 

6.9 x 10-8 
2.0 x 10-11 

I 

g n  
0.31003 
0.31007 
0.34846 
0.34938 
0.35007 
0.38962 
0.39008 
0.4025 

1 

rn d7e 

9.36 x 

6.89 x 10-8 
2.02 x 10-11 
8.64 x 10-5 

1.21 x 10-17 

6.00 x 10-4 

4.22 x 10-4 
3.20 x 10-3 

a The potential parameters are given by R. B. Bernstein, C. F. Curtiss, S. Imam-Rahajoe, 
and W. T. Wood, J. Chem. Phys., 1966,44,4072; b R. A. Bain and J. N. Bardsley, J. Chem. 
Phys., 1971, 55, 4535; C A. S. Dickinson, Mol. Phys., 1970, 18, 441. The semiclassical results 
are calculated from equations (15) and (16); Resonance energies and widths are expressed 
as a fraction of the well depth; e These values are more accurate than in the original paper of 
A. S. Dickinson, Mol. Phys., 1970, 18, 441 and are reported by  M. S. Child ‘Molecular 
Spectroscopy’, ed. R. F. Barrow, D. A. Long, and D. J. Millen (Specialist Periodical Reports), 
The Chemical Society, London, 1974, Vol. 2, Ch. 7. 

(15) and (16) for the Lennard-Jones (12, 6) potential (2) compared with exact 
quantum  result^.^^^^^ The agreement is again seen to be excellent. 

Equation (16) for the widths is based on the approximation that rn is small. 
Table 5 compares equation (16) with exact quantum res~lts5~381 for the broad 
quasi-bound states of ground-state H2. (These calculations use the very accurate 

A. S. Dickinson, Mol. Phys., 1970, 18, 441. 
a1 R. J. Le Roy and R. B. Bernstein, J. Chenz. Phys., 1971, 54, 51 14. 
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Table 5 Exact quantum and semiclassical resonance widths for the Hz ground 
statea 

n 
11 
8 
7 
6 
5 
4 
3 
2 
1 
0 

1 
14 
21 
23 
25 
27 
29 
31 
33 
35 
38 

Qaantum 
r,, blcm -1 
17.9 
39.4 
30.4 
26.5 
25.1 
24.7 
23.6 
20.4 
14.1 
80 .O 

Semic Iassicald 

19.2 
38.2 
31.6 
27.8 
26.4 
25.8 
24.5 
21 .o 
14.3 
64.4 

r, C/cm-l 

a Adapted from M. S. Child ‘Molecular Spectroscopy’, ed. R. F. Barrow, D. A. Long, and 
D. J. Millen (Specialist Periodical Reports), The Chemical Society, London, 1974, Vol. 2, 
Ch. 7; b R. J. Le Roy and R. B. Bernstein, J.  Chem. Phys., 1971, 54, 5114; c Calculated from 
equation (16); Less accurate values were reported in Table 2 of ref. 49. 

potential -energy curve of Kolos and Wolniewicz82). There is good agreement 
even though the widths are relatively large, and equation (16) might be thought 
to be invalid. 

To summarize this section: it has been shown how quasi-bound states can be 
characterized by complex energy or complex angular-momentum eigenvalues. 
The semiclassical eigenvalue equations involve only real- or complex-valued 
classical dynamical quantities. The agreement with exact quantum results is 
very good. 

3 Inelastic Collisions: Collinear Collision of an Atom with a Morse Oscillator 
An inelastic collision is the next example of semiclassical mechanics to be 
considered. The model is that of a collinear collision of an atom with a Morse 
0scillator~3-~~ (cf Table 2). An exponential repulsion between the atom and the 
end of the molecule is assumed. The oscillator is initially in quantum state n 
and the problem is to calculate the probability that the oscillator is in a quantum 
state rn after the collision. 

In the quasi-bound system discussed in Section 2, the distribution of classical 
turning points played an important role in the semiclassical analysis. It is 
instructive to consider the turning-point distribution in the present case. An 
inelastic collision is more complicated than the previous example because, 

sB W. Kolos and L. Wolniewicz, J.  Chem. Phys., 1964, 41, 3663; ibid., 1965, 43, 2429; ibid., 

83 A. P. Clark and A. S. Dickinson, J.  Phys. (B) ,  1973, 6,  164. 
1968, 49, 404. 

J .  N. L. Connor, Mol. Phys., 1974, 28, 1569. 
R. Schinke and J. P. Toennies, J .  Chem. Phys., 1975, 62,4871. 

*6 J. W. Duff and D. G .  Truhlar, Chem. Phys., 1975,9,243. 
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in addition to the radial co-ordinate R, the oscillator co-ordinate q must also be 
considered. 

The classical Hamiltonian for the collision (in reduced units) is :a 

H = (2P)-'pR2 f ipq2 4- v M ( q )  4- v(R, 4) (1 7) 
= E  

where p~ and pq  are the classical momenta conjugate to R and q, respectively, 
and E is the total energy. V M ( q )  is the Morse oscillator potential: 

Vidq) = D (exp[- q/(20)*] - 1 l2 

V(R,q) = exPL:-4R - dl 

(1 8) 

and V(R, q) is the exponential interaction between the atom and the oscillator: 

(19) 

Figure 6 shows some classical trajectories in (R, q) space for the Hamiltonian 
(17) calculated by numerical integration of Hamilton's equations on a computer.84 
The collision starts and finishes at a value of R sufficiently large that the inter- 
action V(R, q) is negligible. The parameters for the collision correspond approxi- 
mately to a collision between He and H2.83-86 

6 I I 1 1 I 
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The turning points of the oscillator (q motion) and that of the incoming atom 
( R  motion) can be seen clearly. Figure 6 implies that, in a semiclassical analysis, 
using (pq, q) as variables for the oscillator will cause difficulties because of the 
singular behaviour of semiclassical wavefunctions at turning points [see equa- 
tion (S)]. Another important problem that arises in a semiclassical calculation 
of a transition probability Pmen is ‘What is the classical equivalent of a quantum 
number?’. 

These problems can be overcome by using action-angle variablesa7 (J,  w )  
for the oscillator instead of (pq,  9). Figure 7 shows the same collision as in Figure 6 

I I 1 1 I 

-2 0 2 4 6 8 10 
R 

Figure 7 Same collision as in Figure 6 ,  but plotted in (R, w )  space. The Hamiltonian for the 
collision is defined by equations (21)--(23). 

but plotted in (R, w )  space.84 It is immediately clear that the turning points in 
the oscillator motion have been eliminated, and only one in the R motion 
remains. 

The connection between action variables and quantum numbers is found by 
applying the Bohr-Sommerfeld quantization relation to the oscillator [cf. equa- 
tions (14) and (IS)]. Because of this relation, it is convenient to repiace J by a 
(continuous) classical variable ii (the ‘quantum number variable’) defined by:ug88 

H. Goldstein, ‘Classical Mechanics’, Addison-Wesley, Reading, Mass., 1950, p. 288. 
R. A. Marcus, J. Chem. Phys., 1971, 54, 3965. 
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In terms of (ii, w), the classical Hamiltonian for the collision becomes:84 

(21) H = (2pI-l p~~ + E ( E )  + V(R,  q) 
= E  

where the Morse oscillator energies are: 

€(ii) = (ii + 4) - (40)-1(ii + g)z 

q = ( 2 W  {h[l  + ( E / D ) + c o s ( ~ ~ ~ ) ]  - ln[l - ( ~ / 0 ) ] }  

(22) 

and q is related to w by: 

(23) 

It is interesting to note that in the Old Quantum Theory action-angle variables 
were called 'uniformizing  variable^'.*^ Table 6 summarizes the main properties 
of action-angle variables that are useful in semiclassical calc~lations.43@~~~ 

Table 6 Properties of action-angle variables useful in semiclassical calculations 

1 .  Use of action-angle variables removes singularities in the unperturbed 
semiclassical wavefunction for the internal states. 

2. The action variables bear a simple (Bohr-Sommerfeld) relation to quantum 
numbers. 

3. Initial angle variables occur in [0, 11. 

A transition probability Pm,-n involves the oscillator initially in a state n and 
finally in a state m. Now the final value of the quantum number variable ii 
depends on the initial value of the angle variable (phase) of the oscillator wo. 
This is illustrateds4 in Figure 8 for the collision already shown in Figures 6 and 7. 
The final 5 versus initial w0 plot is seen to have a simple sinusoidal shape. 

Consider now the elastic transition 4 - 4. It is clear from Figure 8 there are 
two values of wo (called wl0 and w2O) such that the final value of ii is 121 = 4. 
The two values of w0 occur where the horizontal line tn = 4 intersects the Fz(wo) 
curve. 

The simplest semiclassical approximation for the transition probability 
is :43,44,84,88 

= p1 + p2 p g y 5  

where 

is the classical probability associated with each individual trajectory contribut- 
ing to the transition n --t m and is found from the slope of the curve in Figure 8. 

The primitive semiclassical approximation is an asymptotic one that assumes 
that the two contributing trajectories are well separated from one another :43,44,88 

N. Bohr, 'On the Application of the Quantum Theory to Atomic Structure', Supplement 
to Proc. Cambridge Phil. SOC., 1924, p. 4. 
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I I 1 I 

= pi + p2 + 2(pip2)+ sin(Az - A i )  (26) p2Pr;ive 

where the classical phase: 

(27) I dt  - R(t)pR(t) d t  + &T 

tb rb 

is evaluated along each contributing trajectory from initial time to to a final 
time t. 

The last term in equation (26) gives rise to an interference effect. Since the 
average of this term is zero, the primitive approximation (26) oscillates about the 
classical result (24). This interpretation of equations (24) and (26) is the same as 
that for the famous ‘two slit’ experiment often discussed in books on quantum 
mechanics. 
O 0  R. P. Feynman and A. R. Hibbs, ‘Quantum Mechanics and Path Integrals’, McGraw-Hill, 

New York, 1965, Ch. 1. 
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The primitive approximation (26) breaks down when the two contributing 
trajectories come close together because pi - co. This catastrophic behaviourgl 
can be removed by using a uniform Airy approximation that is valid regardless 
of whether the trajectories are close together or far apart :92993 

Pzrff = d p i *  + pzi)2 x3 Ai(- x) + r(pli - ~ 2 ~ ) ~  x-* Ait2 (- x) (28) 

where 

x = CHd2 - A1113 (29) 

and Ai is the regular Airy function (already mentioned in Section 2). When the 
trajectories are well separated, equation (28) reduces to the primitive approxima- 
tion (26).92993 

Finally, equation (28) requires for its validity that the amplitude of the E 
versus w0 plot be large. When the amplitude is small, a uniform Bessel approxima- 
tion can be derived for this case:94 

PE:;~ = +r(pl* + p23)2~k2(5)  CcOse + &r(pl+ - p 2 * ) 2 ~ k / 2 ( 5 )  <lcOs~ (30) 

(52 - k2)+ - kcos-l(k/<) = +(A2 - d l )  

where 

and 
c o d  = [l - (k/L32]i , k = Im - n1 (31) 

Equation (30) reduces to the Airy approximation (28) when the amplitude in 
the E versus w0 plot becomes large.94~95 

The structure of equations (24)-(3 1) is interesting. Their validity increases 
in the order classical - primitive ---f Airy - Bessel for the results discussed 
below, but so does the complexity of the equations. In each case, however, 
they involve only (real-valued) classical dynamical quantities, namely the pi 
and Ar. 

Consider next the transition 4 -+ 3 in Figure 8. It is clear there are no real 
values of wo such that the equation: 

E(w0) = 3 (32) 
is satisfied. Thus the transition is dynamically forbidden in classical mechanics 
even though it is energetically allowed. The 4 - 3 transition is an example of a 
‘classically forbidden’ transition, in contrast to the 4 - 4 one which is ‘classically 
allowed’.43.44 The classical approximation for this transition would be simply 
zero : 

The use of the word ‘catastrophic’ is deliberate. Application of ‘Catastrophe Theory’ 
to the classical and semiclassical mechanics of molecular collisions leads to a deep under- 
standing of their inter-relationship (J. N. L. Connor, ‘Catastrophes and Molecular Col- 
lisions’, Mul. Phys., in the press). 

92 J. N. L. Connor and R. A. Marcus, J .  Chem. Phys., 1971, 55, 5636. 
93 J. N. L. Connor, Mol. Phys., 1973, 25, 181. 
O4 J. R. Stine and R. A. Marcus, J .  Chrm. Phys., 1973, 59, 5145. 
O6 J .  N. L. Connor, Chem. Phys. Letterb, 1974, 25, 61 1. 
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pizqsical - - 0  

In semiclassical mechanics, however, complex values of wo satisfying equation 
(32) must also be considered. Such complex solutions of equation (32) do indeed 
exist, and can be used to integrate Hamilton’s equations, in which the co- 
ordinates, momenta, and time become complex-valued during the collision. 
Figure 9 shows a plot of Re E against Im ii for the transition 4 -+ 1 of Figure 8.84 

2 

1 

Im 7i 
0 

-1 

-2 

-3 

-4 

Re 6 I 

Figure 9 Plot of Re ii against Tm ii for the transition 4 + 1 of Figure 8 .  The collision 
parameters are the same as in Figures 6-8. 

The expressions for the transition probabilities for classically forbidden transi- 
tions are the appropriate extensions of equations (25)-(31) in which the pi’s 
and di’s become complex-valued84 [cf. equations (1 1)-(14) of Section 21. 

Table 7 compares a few exact quantum results83 with the various semiclassical 
appro~imations.8~ The uniform Bessel approximation (30) is generally in very 
good agreement with the quantum results, although the Airy approximation 
(28) is of comparable accuracy for inelastic transitions. The primitive approxima- 
tion is generally less accurate than either the Airy or Bessel approximations. 

More advanced reviews of the semiclassical mechanics of inelastic (and reac- 
tive) collisions have been written by Miller96-gs and Child,99 where further 

98 W. H. Miller, Adv. Chem. Phys., 1974, 25, 69. 
9 i  W. H. Miller, ‘The Physics of Electronic and Atomic Collisions.’ Invited Lectures and 

Progress Reports, VIII’th ICPEAC, ed. B. C. CobiC and M. V. Kurepa, Institute of Physics, 
Beograd, 1973, p. 503. 

g 8  W. H. Miller, Adv. Chem. Phys., 1975, 30, 77. 
99 M. S. Child, ‘Modern Theoretical Chemistry’, Vol. 3, ‘Dynamics of Molecular Col- 

lisions’, ed. W. H. Miller, Plenum Press, New York, 1976. 
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references can be found together with those in the literature surveys of refs. 
4 7 4 9 .  

To summarize this section: it has been shown how action-angle variables 
play an important role in applying semiclassical mechanics to inelastic collisions. 
Classically forbidden transitions can be treated with the help of complex-valued 
solutions of Hamilton’s equations. Very good agreement with exact quantum 
results can be obtained. 

4 Reactive Collisions: Collinear H + H2 Reaction 
The final example of semiclassical mechanics to be considered is the collinear 
exchange reaction : 

H + H2 (n = O)+Ha (m = 0) + H (33) 

in which the reactant and product molecules are in their ground vibrational 
states. The potential-energy surface used for the reaction is the one of Porter 
and Karplus100 (cf. Table 2). This has a barrier height of z 38 kJ mol-l, and 
since the zero-point energy of H2 is z 26 kJ mol-l there is a barrier of z 12 kJ 
mol-1 to reaction. 

The system can tunnel through the barrier to form reaction products in a way 
similar to the decay of a quasi-bound state discussed in Section 2. This tunnelling 
region is an interesting one because it dominates the thermal energy kinetics. 
In a semiclassical framework, tunnelling is a classically forbidden process that 
can be treated by complex-valued classical trajectories. Since the semiclassical 
theory is similar to that for the non-reactive inelastic collision of Section 3, 
only the results will be described. The calculations discussed below were carried 
out by Miller and co-workers.101-103 

Figure 10 shows the semiclassical reaction transition probability PRoc o 
together with the exact quantum results.lM The agreement between the two 
over ten orders of magnitude is impressive. 

Figure 11 shows the same results on a linear scale, together with the transition 
probability obtained in a classical Monte-Carlo (real-valued) trajectory calcula- 
tion.lO5 

Figure 11 is useful for discussing the concept of tunnelling in systems with 
many degrees of freedom.101J02 It is necessary to have a procedure that defines 
tunnelling, since in an exact quantum-mechanical calculation no distinction 
is made between it and non-tunnelling processes. 

From the examples discussed in Sections 2 and 3, it should be clear that, in 
semiclassical mechanics, tunnelling is a classically forbidden process that uses 
complex-valued classical trajectories in its description. 

loo R. N. Porter and M. Karplus, J .  Chem. Phys., 1964, 40, 1105. 
lol T. F. George and W. H. Miller, J .  Chem. Phys., 1972, 56, 5722. 
lo2 T. F. George and W. H. Miller, J .  Chem. Phys., 1972, 57, 2458. 
I o 3  S. M. Hornstein and W. H. Miller, J .  Chem. Phys., 1974, 61, 745. 
l o *  See J .  W. Duff and D. G.  Truhlar, C h m .  Phys. Letters, 1973, 23, 327, and references 

I o G  D. J Diestler and M. Karplus, J .  Chem. Phys., 1971, 55, 5832. 
therein. 
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10-4 

lo-' 

10-l0 

5 10 15 

E&J mol-' 

20 

Figure 10 Reaction probability P & ,  for the ground-state to ground-state H + Ha --+ 

H2 + H coilinear reaction on the Porter-Karplus surface as a function of the relative 
collision energy Eo. The solid line ( Q M )  is the exact quantum mechanical result (see 
J. W.  Duff and D.  G. Truhlar, Chem. Phys. Letters, 1973, 23, 327) and the dotted line 
(SC) is the semiclassical result (S.  M.  Hornstein and W. H. Miller, J. Chem. Phys., 
1974, 61, 745). 

For the transition probability curves in Figure 1 1, complex-valued trajectories 
occur up to an energy of z 22 kJ mol-1. There is thus a considerable amount of 
tunnelling in this system. 

Another definition of tunnelling compares the results of a classical Monte- 
Carlo calculation with the exact quantum ones. From Figure 11, the Monte-Carlo 
threshold is z 21 kJ mol-1, so again there is a considerable amount of tunnelling, 
though less than in the semiclassical definition. 

There is a difficulty with the Monte-Carlo definition, however. The usual 
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0.6 

0.5 

0.4 

P R O + O  

0.3 

0.2 

0.1 

0 

/ 

14 16 18 20 22 

E,-,/kJ mol-I 

Figure 11 Same as Figure 10 except that the ordinate is shown on a linear scale. The dashed 
line (CL) is the classical Monte-Carlo result (D.  J. Diestler and M. Karplus, J. Chem. 
Phys., 1971,55, 5832). 

Monte-Carlo method assigns an initial quantum number to the oscillator and 
averages over its initial phase. This results in a continuous range of E values for 
the products (cf. Figure 8). To quantize these classical trajectories, they are 
assigned to ‘boxes’ labelled by the closest integer value of ii. Although reasonable, 
this method of ‘quantizing’ classical trajectories is nevertheless an arbitrary one, 

147 



Molecular collisions and the semiclassical approximation 

and other ‘quantization’ methods1°6-108 produce different thresholds for the 
reaction and hence different amounts of tunnelling. These difficulties do not 
arise in the semiclassical theory, where quantization is unambiguous and tunnel- 
ling is associated with complex-valued classical trajectories. 

The definitions discussed above are dynamic ones, i.e. tunnelling is defined as 
something that does not occur according to (real-valued) classical dynamics. 
In contrast, an energetic definition can be used. According to this, tunnelling 
occurs if the collision energy is less than the barrier height. As already mentioned, 
the barrier to reaction on the Porter-Karplus surface is z 12 kJ mol-1, so from 
Figures 10 and 11 there is a very small amount of tunnelling if this definition 
is used. 

The dynamic and energetic definitions are identical for systems with one degree 
of freedom: if the system has sufficient energy to go over a barrier, then classical 
dynamics will also take the system over that barrier. However, this need no longer 
be the case in systems with more than one degree of freedom because certain 
processes may be energetically allowed but dynamically forbidden (cf. Figure 8). 

To summarize this section: it has been shown how semiclassical mechanics 
can be applied to reactive molecular collisions, and that good agreement with 
exact quantum results can be obtained. The definition of tunnelling has also 
been discussed. 

5 Conclusions 
This review has discussed the application of semiclassical mechanics to elastic, 
inelastic, and reactive molecular collisions. Simple examples were considered to 
illustrate some important features of each type of collision as clearly as possible. 
In addition, comparison with exact quantum results showed the semiclassical 
approximations to be numerically very accurate. However, the semiclassical 
approach can be applied to more complicated (yet realistic) systems where 
the standard quantum mechanical techniques are not applicable or converge 
very slowly. 

The difficulty of solving a problem by semiclassical methods is related to the 
complexity of the structure of classical trajectories. In all cases, however, the 
semiclassical formalism involves h and real- or complex-valued classical quanti- 
ties. The semiclassical approach allows a clear distinction between quantum 
effects, which a purely classical theory cannot describe, and dynamical effects, 
which are common to both classical and quantum descriptions. The semiclassical 
approach thus allows a broad understanding and physical insight that is fre- 
quently lacking in the usual quantum theories, as well as often being numerically 
very accurate. 
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